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fMRI is a commonly used technique for mapping human brain 
activity1. However, the blood-oxygen-level-dependent (BOLD) 
signal measured by fMRI is typically mixed with non-neural 

sources of variability2. Preprocessing identifies the nuisance sources 
and reduces their effect on the data3,4, and further addresses particu-
lar imaging artifacts and the anatomical localization of signals5. For 
instance, slice-timing6 correction, head-motion correction, and sus-
ceptibility distortion correction (SDC) address particular artifacts, 
whereas co-registration and spatial normalization are concerned 
with signal localization (Supplementary Note 1). Extraction of a 
signal that is faithful to the underlying neural activity is crucial to 
ensure the validity of inference and the interpretability of results7. 
Thus, a primary goal of preprocessing is to reduce sources of false 
positive errors without inducing excessive false negative errors. An 
example of a false positive error familiar to most researchers is acti-
vation observed outside the brain due to faulty spatial normaliza-
tion. As a more practical example, unaccounted-for head motion 
in resting-state fMRI data can generate systematic correlations that 
could be misinterpreted as functional connectivity8. Conversely, 
false negatives can result from a number of preprocessing fail-
ures, such as anatomical misregistration across individuals, which 
reduces statistical power.

Workflows for preprocessing of fMRI data produce two broad 
classes of outputs. First, preprocessed time series are derived from 
the original data after the application of retrospective signal correc-
tions, spatiotemporal filtering, and resampling onto a target space 
appropriate for analysis (e.g., a standardized anatomical reference). 
Second, experimental confounds are additional time series such as 

physiological recordings and estimated noise sources that are useful 
for analysis (e.g., to be modeled as nuisance regressors). Some com-
monly used confounds include motion parameters, framewise dis-
placement9, spatial s.d. of the data after temporal differencing8, and 
global signals, among others. Preprocessing may include further steps 
for denoising and estimation of confounds, such as dimensionality-
reduction methods based on principal component analysis or inde-
pendent component analysis. Two corresponding instances of these 
techniques are component-based noise correction (CompCor10) and 
automatic removal of motion artifacts (AROMA11).

The neuroimaging community is well equipped with tools that 
implement the majority of the individual steps of preprocessing 
described so far (Table 1). These tools are readily available in soft-
ware packages such as AFNI12, ANTs13, FreeSurfer14, FSL15, Nilearn16, 
and SPM17. Despite the wealth of accessible software and multiple 
attempts to outline best practices for preprocessing2,5,7,18, the large 
variety of data-acquisition protocols has led to the use of ad hoc 
pipelines customized for nearly every study19. In practice, the neu-
roimaging community lacks a preprocessing workflow that reliably 
provides high-quality and consistent results from diverse datasets.

Results
fMRIPrep is a robust and convenient tool that enables research-
ers and clinicians to prepare both task-based and resting-state 
fMRI data for analysis. Its outputs allow for a range of applications, 
including within-subject analysis using functional localizers, voxel-
based analysis, surface-based analysis, task-based group analysis, 
resting-state connectivity analysis, and others.
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A modular design alongside BIDS allows for a flexible, adaptive 
workflow. fMRIPrep is composed of sub-workflows that are dynami-
cally assembled into different configurations depending on the input 
data. These building blocks combine tools from widely used, open-
source neuroimaging packages (Table 1). The workflow engine 
Nipype20 is used to stage the workflows and deal with execution details 
(such as resource management). The workflow comprises two major 
blocks, separated into anatomical MRI and fMRI processing streams 
(Fig. 1). The Brain Imaging Data Structure21 (BIDS; Supplementary 
Note 2) allows fMRIPrep to identify the structure of the input data 
and gather the available metadata (e.g., imaging parameters) without 
manual intervention. fMRIPrep self-adapts to dataset irregularities 
such as missing acquisitions or runs through a set of heuristics.

Visual reports ease quality control and maximize transparency. 
Users can assess the quality of preprocessing with an individual 
report generated per participant (Supplementary Fig. 1). Reports 
contain dynamic and static mosaic views of images at different 
quality control points along the preprocessing pipeline. Written in 
HTML, reports can be opened with any web browser, are amenable 
to integration in online science services (e.g., OpenNeuro (https://
openneuro.org/) and CodeOcean22), and maximize shareability 
between peers. These reports effectively minimize the amount of 
time required to assess the quality of the results. As an additional 
transparency enhancement, reports include a citation boilerplate 
that follows established guidelines23 and gives due credit to all 
authors of all of the individual pieces of software used in fMRIPrep.

Highlights of fMRIPrep in the neuroimaging context. fMRIPrep 
is analysis-agnostic with respect to currently available analysis 
choices, as it supports a range of higher-level analysis and model-
ing options. Alternative workflows such as afni_proc.py (AFNI12), 
FEAT (FSL15), C-PAC24 (configurable pipeline for the analysis of 
connectomes), Human Connectome Project (HCP25) Pipelines26, 
and the Batch Editor extension to SPM are not agnostic because 
they prescribe particular methodologies to analyze the prepro-

cessed data. Limitations to compatibility with downstream analysis 
derive from the coordinate space of the outputs and the regular (vol-
ume) versus irregular (surface) sampling of the BOLD signal. For 
example, HCP Pipelines supports surface-based analyses on subject 
or template space. Conversely, C-PAC and FEAT are volume-based 
only. Although afni_proc.py is volume-based by default, pre-recon-
structed surfaces can be manually set for sampling of the BOLD 
signal before analysis. fMRIPrep allows a multiplicity of output 
spaces including subject space and atlases for both volume-based 
and surface-based analyses. Whereas fMRIPrep avoids processing 
steps that might limit further analysis (e.g., spatial smoothing), 
other tools are designed to perform preprocessing that supports 
specific analysis pipelines. For instance, C-PAC carries out several 
processing steps toward the connectivity analysis of resting-state 
fMRI. Further advantages of fMRIPrep include ‘fieldmap-less’ SDC, 
community-driven development and high standards of software 
engineering, and a focus on reproducibility (Methods).

fMRIPrep yields high-quality results from diverse data. We iter-
atively maximized the robustness and overall quality of the results 
generated by fMRIPrep by using a two-stage validation framework 
(Supplementary Fig. 2). In phase I for fault discovery, we tested 
fMRIPrep on a set of 30 datasets from OpenfMRI (https://openfmri.
org/) (Supplementary Table 1). Because data of substandard qual-
ity are likely to degrade the outcomes of image processing, we used 
MRIQC27 to select the set of test images. Phase I concluded with the 
release of fMRIPrep version 1.0 on 6 December 2017. We addressed 
quality assurance and reliability validation in phase II, thereby 
improving the aggregate quality of the results (Fig. 2). After phase II, 
50 datasets out of 54 were rated above the ‘acceptable’ average quality 
level. The remaining four datasets were above the ‘poor’ level and at 
or near the ‘acceptable’ rating. We monitored the individual evolu-
tion of every dataset at seven quality control points (Supplementary 
Figs. 2 and 3) and report some examples of issues resolved during 
validation (Supplementary Results 1). Phase II concluded with the 
release of fMRIPrep version 1.0.8 on 22 February 2018.

Table 1 | State-of-the-art neuroimaging offers a catalog of readily available software tools

Preprocessing task Included with fMRIPrep Alternatives (not included in fMRIPrep)

Anatomical T1-weighted brain extraction antsBrainExtraction.sh (ANTs) bet (FSL), 3dSkullstrip (AFNI), MRTOOL (SPM 
plug-in)

Anatomical surface reconstruction recon-all (FreeSurfer) CIVET, BrainSuite, Computational Anatomy (SPM 
plug-in)

Head-motion estimation (and correction) MCFLIRT (FSL) 3dvolreg (AFNI), spm_realign (SPM), cross_
realign_4dfp (4dfp), antsBrainRegistration (ANTs)

Susceptibility-derived distortion estimation (and 
unwarping)

3dqwarp (AFNI) FUGUE and topup (FSL); FieldMap and HySCO (SPM 
plug-ins)

Slice-timing correction 3dTshift (AFNI) slicetimer (FSL), spm_slice_timing (SPM), 
interp_4dfp (4dfp)

Intrasubject registration bbregister (FreeSurfer), FLIRT (FSL) 3dvolreg (AFNI), antsRegistration (ANTs), Coregister 
(SPM GUI)

Spatial normalization (intersubject co-registration) antsRegistration (ANTs) @auto_tlrc (AFNI), FNIRT (FSL), Normalize (SPM 
GUI)

Surface sampling mri_vol2surf (FreeSurfer) SUMA (AFNI), MNE, Nilearn

Subspace projection denoising (e.g., independent 
or principal component analysis)

MELODIC (FSL), ICA-AROMA Nilearn, LMGS (SPM plug-in)

Confounds In-house implementation fsl_motion_outliers (FSL), TAPAS PhysIO (SPM 
plug-in)

Detection of non-steady states In-house implementation Ad hoc implementations, manual setting

fMRIPrep integrates best-in-breed tools for each of the preprocessing tasks that its workflow covers, except for steps implemented as part of the development of fMRIPrep (in-house implementations). 
Tasks listed in the first column are described in detail in Supplementary Note 1.
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fMRIPrep prevents loss of spatial accuracy via smoothing. We 
demonstrate that the focus on robustness against data irregular-
ity does not come at the cost of the quality of the preprocessing 
outputs. Moreover, the preprocessing outcomes of FSL’s FEAT are 
smoother than those of fMRIPrep (Fig. 3a). Although preprocessed 
data were resampled to an isotropic voxel size of 2.0 ×​ 2.0 ×​ 2.0 mm3, 
the smoothness estimation (before the prescribed smoothing step) 
for fMRIPrep was less than 4.0 mm, very close to the original reso-
lution of 3.0 ×​ 3.0 ×​ 4.0 mm3 of these data. We calculated s.d. maps 
in MNI (Montreal Neurological Institute) space28 for the tempo-
ral average map derived from preprocessing with both alterna-
tives. Visual inspection of these variability maps (Fig. 3b) revealed 
higher anatomical accuracy of fMRIPrep compared with that of 
FEAT, probably reflecting the combined effects of a more precise 
spatial normalization scheme and the application of fieldmap-less 
SDC. fMRIPrep outcomes were better aligned with the underly-
ing anatomy in regions typically warped by susceptibility distor-
tions such as the orbitofrontal lobe, as demonstrated in close-ups 
(Supplementary Fig. 4). We also compared preprocessing done 
with fMRIPrep and FEAT in two common fMRI analyses. First, we 
carried out within-subject statistical analysis using FEAT—which 
provides both preprocessing and first-level analysis, separable via 
configuration file—on both sets of preprocessed data. Second, we 
conducted a group statistical analysis using ordinary least-squares 
mixed modeling (FLAME29; FSL). In both experiments, we applied 
identical analysis workflows and settings to both preprocessing 
alternatives. The first-level analysis showed that the thresholded 
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Fig. 2 | Integration of visual assessment into the software testing 
framework effectively increases the quality of results. In an early 
assessment of quality using fMRIPrep version 1.0.0, the overall rating of 
two datasets was below the cutoff for the ‘poor’ category, and that of four 
datasets was below the ‘acceptable’ level (left-hand column of colored 
circles). After some outstanding issues detected in the early assessment 
were addressed, the overall quality of processing improved substantially 
(right-hand column of colored circles), and no datasets were below the 
‘poor’ quality level. Only two datasets were rated below the ‘acceptable’ 
level in the second assessment (using fMRIPrep version 1.0.7).
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activation count maps for the go versus successful-stop contrast in 
the ‘stopsignal’ task were similar (Fig. 4). The results from both 
pipelines identified activation in the same regions. However, 
because data preprocessed with FEAT were smoother, the results 
from fMRIPrep were more local and better aligned with the corti-
cal sheet. The overlap of statistical maps, as well as Pearson’s cor-
relation, was tightly related to the smoothing of the input data. In 
the group analysis, fMRIPrep and FEAT performed equivalently 
(Supplementary Results 2).

Discussion
fMRIPrep is an fMRI preprocessing workflow developed to excel 
at four aspects of scientific software: robustness to data idiosyncra-
sies, high quality and consistency of results, maximal transparency, 
and ease of use. We stress that fMRIPrep has been developed with 
the best software engineering principles, which are fundamental to 
ensure software reliability. The pipeline is easy to use for researchers 
and clinicians without extensive computer engineering experience, 
and produces comprehensive visual reports.

In a comparison with FSL’s FEAT, fMRIPrep achieved higher 
spatial accuracy and introduced less uncontrolled smoothness. 
Group P statistical maps differed only in their smoothness (sharper 
for fMRIPrep). The fact that first-level and second-level analyses 
resulted in small differences between fMRIPrep and our ad hoc 
implementation of a FEAT-based workflow indicates that the indi-
vidual preprocessing steps perform similarly when they are fine-
tuned to the input data. This justifies the need for fMRIPrep, which 
autonomously adapts the workflow to the data without error-prone 
manual intervention. To a limited extent, this also mitigates some 
concerns and theoretical risks that arise from analytical degrees 
of freedom19 available to researchers. fMRIPrep stands out among 
pipelines because it automates the adaptation to the input dataset 
without compromising the quality of the results.

One limitation of this work is the use of visual and semivisual 
assessments of the quality of preprocessing outcomes. Although 
some frameworks have been proposed for the quantitative evalu-
ation of preprocessing on task-based (e.g., NPAIRS30) and resting-
state31 fMRI, they impose a set of assumptions on the test data and 
the workflow being assessed that limit their suitability in general. 
The modular design of fMRIPrep defines an interface for each pro-
cessing step, which permits programmatic evaluation of the many 
possible combinations of software tools and processing steps. This 
will also enable the use of quantitative testing frameworks to pursue 
the minimization of type I errors without an associated increase in 
type II errors. The range of possible applications for fMRIPrep also 
presents some boundaries. For instance, images with a very narrow 
field of view often do not contain enough information for standard 
image-registration methods to work correctly. OpenfMRI datasets 
representing images with reduced fields of view were excluded from 
the evaluation because they are not yet fully supported by fMRIPrep. 
Extension of fMRIPrep’s support for these particular images is 
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already a future line of the development roadmap. fMRIPrep may 
also underperform for particular populations (e.g., infants) or for 
brains that show nonstandard structures such as tumors, resected 
regions, or lesions. Despite these challenges, fMRIPrep performed 
robustly on data from a study involving simultaneous MRI and 
electrocorticography, which are challenging to analyze owing to 
the massive BOLD-signal dropout near the implanted cortical elec-
trodes (Supplementary Fig. 5). In addition, fMRIPrep’s modular 
architecture makes it straightforward to extend the tool to support 
specific populations or new species by providing appropriate atlases 
of their brains. This would be particularly interesting as a means to 
adapt the workflow to data collected from rodents and nonhuman 
primates in the future.

Approximately 80% of the analysis pipelines investigated by 
Carp19 were implemented using AFNI12, FSL15, or SPM17. Ad hoc 
pipelines adapt the basic workflows provided by these tools to 
the particular dataset at hand. Although workflow frameworks 
like Nipype20 ease the integration of tools from different pack-
ages, these pipelines are typically restricted to just one of these 
alternatives (AFNI, FSL, or SPM). Otherwise, scientists can adopt 
the acquisition protocols and associated preprocessing soft-
ware of large consortia26,32 like the HCP and the UK Biobank33. 
The off-the-shelf applicability of these workflows is contravened 
by important limitations on the experimental design. Therefore, 
researchers typically opt to recode their custom preprocessing 
workflows with nearly every new study19. That practice entails a 
‘pipeline debt’, which requires an investment in proper software 
engineering to ensure acceptable correctness and stability of the 
results (e.g., continuous integration testing) and reproducibility 
(versioning, packaging, containerization, etc.). A trivial example 
of this risk is the leakage of ‘magic numbers’ that are hard-coded 
in the source (e.g., a crucial imaging parameter that has inadver-
tently changed from one study to the next one). Until fMRIPrep, 
an analysis-agnostic approach was lacking.

The rapid increase in the volume and diversity of data, as well 
as the evolution of available techniques for processing and analysis, 
presents an opportunity for considerable advancement of research 
in neuroscience. The drawback resides in the need for progres-
sively more complex analysis workflows that rely on decreasingly 
interpretable models of the data. Such context encourages ‘black-
box’ solutions that efficiently perform a valuable service but do not 
provide insights into how the tool has transformed the data into 
the expected outputs. Black boxes obscure important steps in the 
inductive process mediating between experimental measurements 
and reported findings. This way of moving forward risks producing 
a future generation of cognitive neuroscientists who have become 
experts in sophisticated computational methods but have little to 
no working knowledge of how their data were transformed through 
processing. Transparency is often identified as a remedy for these 
problems. fMRIPrep ascribes to ‘glass-box’ principles, which are 
defined in opposition to the many different facets or levels at which 
black-box solutions are opaque. The visual reports that fMRIPrep 
generates are a crucial aspect of the glass-box approach. Their qual-
ity control checkpoints represent the logical flow of preprocessing, 
allowing scientists to critically inspect and better understand the 
underlying mechanisms of the workflow. A second transparency 
element is the citation boilerplate that formalizes all details of the 
workflow and provides the versions of all involved tools along with 
references to the corresponding scientific literature. A third asset 
for transparency is thorough documentation that delivers addi-
tional details on each of the building blocks represented in the 
visual reports and described in the boilerplate. Further, fMRIPrep 
has been open-source since its inception: users have access to all 
of the incremental additions to the tool through the history of the 
version-control system. The use of GitHub (https://github.com/
poldracklab/fmriprep) grants access to the discussions held dur-

ing development, allowing one to see how and why the main design 
decisions were made. The modular design of fMRIPrep enhances 
its flexibility and improves transparency, as the main features of 
the software are more easily accessible to potential collaborators. In 
combination with some coding style and contribution guidelines, 
this modularity has enabled multiple contributions by peers and 
the creation of a rapidly growing community that would be difficult 
to nurture behind closed doors. A number of existing tools have 
implemented elements of glass-box philosophy (e.g., visual reports 
in FEAT, documentation in C-PAC, the open-source community of 
Nilearn), but the complete package (visual reports, educational doc-
umentation, reporting templates, and a collaborative open-source 
community) is still rare among scientific software. fMRIPrep’s 
transparent and accessible development and reporting aim to better 
equip fMRI practitioners to conduct reliable, reproducible statistical 
analyses with a high-standard, consistent, and adaptive preprocess-
ing instrument.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-018-0235-4.
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Methods
Data. Data used in the validation of fMRIPrep. Participants were drawn from a 
multiplicity of studies9,34–90 available in OpenfMRI, accessed on 30 September 2017. 
Studies were sampled uniformly (four participants each), except for ds000031, 
which consisted of only one participant. Data selection criteria are described 
below. Magnetic resonance imaging (MRI) data were acquired at multiple scanning 
centers, with the following frequencies of vendors: ~70% Siemens, ~14% Philips, 
~14% GE. Data were acquired by 1.5T and 3T systems running varying software 
versions. Acquisition protocols, as well as the particular acquisition parameters 
(including relevant BOLD settings such as the repetition time (TR), the echo 
time (TE), the number of TRs, and the resolution), also varied with each study. 
However, only datasets that included at least one T1-weighted (T1w) and one 
BOLD acquisition per subject run were included. Datasets containing BIDS errors 
(ds000210) and degenerate data (many T1w images of ds000223 are skull-stripped) 
at the time of access were discarded. Similarly, datasets comprising very narrow 
field of view (FoV) BOLD scans (ds000172, ds000217, and ds000232) were also 
excluded. In total, 54 datasets (46 single-session and 8 multi-session datasets) were 
included in this assessment (Supplementary Table 1).

This evaluation covered 54 studies out of a total of 58 studies in OpenfMRI 
that included the two required imaging modalities (T1w and BOLD). Therefore, by 
covering 93% of the studies in OpenfMRI, we ensured considerable heterogeneity 
in terms of acquisition protocols, settings, instruments, and parameters, which 
was necessary to demonstrate the robustness of fMRIPrep against the variability in 
input data features.

Data used in the comparison to FSL FEAT. We reused the UCLA Consortium for 
Neuropsychiatric Phenomics LA5c study34, a dataset that is publicly available 
on OpenfMRI under data accession ds000030. During the experiment, subjects 
performed six tasks, a block of resting-state fMRI, and underwent two anatomical 
scans. The study includes imaging data of a large group of healthy individuals from 
the community, as well as samples of individuals diagnosed with schizophrenia, 
bipolar disorder, and attention-deficit or hyperactivity disorder. As described 
in the data descriptor34, MRI data were acquired on one of two 3T Siemens Trio 
scanners located at the Ahmanson–Lovelace Brain Mapping Center (syngo MR 
B15) and the Staglin Center for Cognitive Neuroscience (syngo MR B17). fMRI 
data were collected with an echo-planar imaging (EPI) sequence (slice thickness, 
4 mm; 34 slices; TR, 2 s; TE, 30 ms; flip angle, 90°; matrix, 64 ×​ 64; FoV, 192 mm; 
oblique slice orientation). Additionally, one T1w image per participant is available 
(MPRAGE; TR, 1.9 s; TE, 2.26 ms; FoV, 250 mm; matrix, 256 ×​ 256; sagittal plane; 
slice thickness, 1 mm; 176 slices). For this experiment, only images including both 
the T1w and the functional scans corresponding the Stop Signal task (referred to as 
‘stopsignal’) were included (totaling N =​ 257 participants).

For the stopsignal task, participants were instructed to respond quickly to a 
‘go’ stimulus. During some of the trials, at unpredictable times, a stop signal would 
appear after the stimulus was presented. During those trials, the subject had to 
inhibit any planned response. In this experiment, we specifically looked into the 
difference between the brain activation during a successful stop trial and a go trial 
(contrast: go – stopsuccess). Thus, we expected to see brain regions responsible for 
response inhibition (negative) and motor response (positive). Further details on 
the task are available with the dataset descriptor34.

The fMRIPrep workflow. Preprocessing anatomical images. The T1w image is 
corrected for intensity nonuniformity with N4BiasFieldCorrection91 (ANTs) 
and skull-stripped with antsBrainExtraction.sh (ANTs). Skull-stripping is done 
through co-registration to a template, with two options available: the OASIS 
template92 (default) and the NKI template93. Using visual inspection, we have 
found that this approach outperforms other common approaches, which is in 
agreement with previous reports26. When several T1w volumes are found, the 
intensity-nonuniformity-corrected versions are first fused into a reference T1w 
map of the subject with mri_robust_template94 (FreeSurfer). Brain surfaces are 
reconstructed from the subject’s T1w reference (and T2w images if available) with 
recon-all95 (FreeSurfer). The brain mask estimated previously is refined with a 
custom variation of a method (originally introduced in Mindboggle96) to reconcile 
ANTs-derived and FreeSurfer-derived segmentations of the cortical gray matter 
(GM). Both surface reconstruction and subsequent mask refinement are optional 
and can be disabled to save run time when surface-based analysis is not needed. 
Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template97 
(version 2009c) is done through nonlinear registration with antsRegistration98 
(ANTs), using brain-extracted versions of both the T1w reference and the standard 
template. ANTs was selected because of its superior performance in terms of 
volumetric group level overlap99. Brain tissues—cerebrospinal fluid (CSF), white 
matter (WM), and GM—are segmented from the reference, brain-extracted T1w 
image with FAST100 (FSL).

Preprocessing functional runs. For every BOLD run found in the dataset, a reference 
volume and its skull-stripped version are generated via an in-house methodology 
(Supplementary Note 3). Then, head-motion parameters (volume-to-reference 
transform matrices and corresponding rotation and translation parameters) are 
estimated with MCFLIRT101 (FSL). From among several alternatives (Table 1), 

MCFLIRT was chosen because its results are comparable to those of other tools102 
and it stores the estimated parameters in a format that facilitates the composition 
of spatial transforms to achieve one-step interpolation (see below). If slice-timing 
information is available, BOLD runs are (optionally) slice-time corrected with 
3dTshift (AFNI12). When fieldmap information is available or the experimental 
fieldmap-less correction is requested (see the section “Fieldmap-less susceptibility 
distortion correction” below), SDC is carried out with the appropriate methods 
(Supplementary Fig. 6). This is followed by co-registration to the corresponding 
T1w reference using boundary-based registration103 with nine degrees of freedom 
(to minimize remaining distortions). If surface reconstruction is selected, 
fMRIPrep uses bbregister (FreeSurfer). Otherwise, the boundary-based co-
registration implemented in FLIRT (FSL) is applied. In our experience, bbregister 
yields the better results103 owing to the high resolution and topological correctness 
of the GM/WM surfaces driving registration. To support a large variety of output 
spaces for the results (the native space of BOLD runs, the corresponding T1w 
space, FreeSurfer’s fsaverage spaces, the template used as a target in the spatial 
normalization step, etc.), one can combine the transformations between spaces. 
For example, for the generation of preprocessed BOLD runs in template space 
(e.g., MNI), the following transforms are concatenated: head-motion parameters, 
the warping to reverse susceptibility distortions (if calculated), BOLD-to-T1w, 
and T1w-to-template mappings. The BOLD signal is also sampled onto the 
corresponding participant’s surfaces with mri_vol2surf (FreeSurfer) when surface 
reconstruction is being performed. Thus, these sampled surfaces can easily be 
transformed onto different output spaces available by concatenating transforms 
calculated throughout fMRIPrep and internal mappings between spaces calculated 
with recon-all. The composition of transforms allows for a single-interpolation 
resampling of volumes with antsApplyTransforms (ANTs). Lanczos interpolation 
is applied to minimize the smoothing effects of linear or Gaussian kernels104. 
Optionally, ICA-AROMA can be used and corresponding ‘non-aggressively’ 
denoised runs are then produced. When ICA-AROMA is enabled, the time  
series are first smoothed and then denoised according to the description of the 
original method11.

Extraction of nuisance time series. To avoid restriction of fMRIPrep’s outputs to 
particular analysis types, the tool does not perform any temporal denoising by 
default. Nonetheless, it provides researchers with a diverse set of confound estimates 
that could be used for explicit nuisance regression or as part of higher-level models. 
This lends itself to decoupling of preprocessing and behavioral modeling, as well 
as evaluation of the robustness of final results across different denoising schemes. 
A set of physiological noise regressors is extracted for the purpose of component-
based noise correction (CompCor10). Principal components are estimated after 
high-pass filtering of the BOLD time series (using a discrete cosine filter with a 
128-s cutoff) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). Six tCompCor components are then calculated from the top 5% 
variable voxels within a mask covering the subcortical regions. This subcortical 
mask is obtained by heavy erosion of the brain mask, which ensures that it does 
not include cortical GM regions. For aCompCor, six components are calculated 
within the intersection of the aforementioned mask and the union of CSF and 
WM masks calculated in T1w space, after their projection to the native space of 
each functional run (using the inverse BOLD-to-T1w transformation). Framewise 
displacement and spatial s.d. of the data after temporal differencing (known as 
‘DVARS’) are calculated for each functional run, both with their implementations 
in Nipype (according to the definitions by Power et al.8). Three global signals are 
extracted within the CSF, the WM, and the whole-brain masks using Nilearn16. 
If ICA-AROMA11 is requested, the ‘aggressive’ noise regressors are collected and 
placed within the corresponding confounds files. Because the non-aggressive 
cleaning with ICA-AROMA is done after extraction of other nuisance signals, the 
aggressive regressors can be used to orthogonalize those other nuisance signals to 
avoid the risk of reintroducing nuisance signal within regression. In addition, a 
non-aggressive version of preprocessed data is also provided, as this variant of ICA-
AROMA denoising cannot be applied with only nuisance regressors.

Fieldmap-less susceptibility distortion correction. Many legacy and current human 
fMRI protocols lack the magnetic resonance fieldmaps necessary to apply standard 
SDC methods. As described in Supplementary Fig. 6, the BIDS dataset is queried to 
discover whether extra acquisitions containing fieldmap information are available. 
When no fieldmap information is found, fMRIPrep adapts the fieldmap-less 
correction for diffusion EPI images introduced by Wang et al.105. They propose using 
the same-subject T1w reference as the undistorted target in a nonlinear registration 
scheme. To maximize the similarity between the T2* contrast of the EPI scan and 
the reference T1w data, the intensities of the latter are inverted. To regularize the 
optimization of the deformation field, only displacements along the phase-encoding 
direction are allowed, and the magnitude of the displacements is modulated using 
priors. To our knowledge, no other existing pipeline applies fieldmap-less SDC to 
BOLD images. Further details on the integration of the different SDC techniques, 
and particularly this fieldmap-less option, are presented in Supplementary Note 3.

fMRIPrep is thoroughly documented, community-driven, and developed with high 
standards of software engineering. Preprocessing pipelines are generally well 
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documented; however, the extreme flexibility of fMRIPrep makes its proper 
documentation substantially more challenging. As is true of other scientific 
software communities, fMRIPrep contributors pledge to keep the documentation 
thorough and updated along coding iterations. Packages also differ on the 
involvement of the community: whereas fMRIPrep includes researchers in the 
decision-making process and invites their suggestions and contributions, other 
packages have a more closed model where the feedback from users is more limited 
(e.g., a mailing list). In contrast to other pipelines, fMRIPrep is community-driven. 
This paradigm allows the fast adoption of advances on fMRI preprocessing, 
which tend to render existing workflows (including fMRIPrep) obsolete. For 
example, fMRIPrep initially performed slice-timing correction before head-motion 
correction, but we adapted the tool to the recent recommendations of Power et al.18 
upon a user’s request. This model has allowed the user base to grow rapidly and 
has enabled substantial third-party contributions to be included in the software, 
such as support for processing of multi-echo datasets. The open-source nature 
of fMRIPrep has permitted frequent code reviews that are effective in enhancing 
the software’s quality and reliability106. Supplementary Note 4 describes how the 
community interacts, discusses the code-review process, and underscores how 
the modular design of fMRIPrep successfully facilitates contributions from peers. 
Finally, fMRIPrep undergoes continuous integration testing (Supplementary 
Note 4), a technique that has recently been proposed as a means to ensure 
reproducibility of analyses in computational sciences107,108. Additional comparison 
points, such as the graphical user interface of several preprocessing workflows, are 
given in Supplementary Note 5.

Ensuring reproducibility with strict versioning and containers. For enhanced 
reproducibility, fMRIPrep fully supports execution via the Docker (https://docker.
com) and Singularity109 container platforms. Container images are generated 
and uploaded to a public repository for each new version of fMRIPrep. These 
containers are released with a fixed set of software versions for fMRIPrep and all 
its dependencies, maximizing run-to-run reproducibility in an easy way. This 
helps to address the widespread lack of reporting of specific software versions 
and the large variability of software versions, which threaten the reproducibility 
of fMRI analyses19. Except for C-PAC, alternative pipelines do not provide official 
support for containers. The adoption of the BIDS-Apps107 container model makes 
fMRIPrep amenable to a multiplicity of infrastructures and platforms: PC, high-
performance computing, Cloud, and so on.

Validation of fMRIPrep on diverse data. Our general validation framework 
(Supplementary Fig. 2) implements a testing plan elaborated prior to the release of 
version 1.0 of the software. The plan is divided into two validation phases in which 
different data samples and validation procedures are applied. Supplementary Table 
1 describes the data samples used in each phase. In phase I, we ran fMRIPrep on a 
manually selected sample of participants that we viewed as potentially challenging 
to the tool’s robustness, exercising the adaptiveness to the input data. In phase II we 
focused on visual assessment of the quality of preprocessing results for a large and 
heterogeneous sample.

Methodology and test plan. To ensure that fMRIPrep fulfills the specifications 
on reliability and scientific-software standards, the tool undergoes a thorough 
acceptance testing plan. The plan is structured in three phases: the discovery of 
faults, evaluation of the robustness, and the final phase at the full coverage of 
OpenfMRI. We note that an additional early test phase (phase 0) was conducted as 
a proof of concept for the tool.

During validation phase I, in which fault-discovery testing was carried out, 
a total of 120 subjects from 30 different datasets (Supplementary Table 1) were 
manually identified as low quality by MRIQC27. Data showing substandard quality 
are known to be likely to degrade the outcomes of image processing, and therefore 
they are helpful in tests of software reliability. This subsample of OpenfMRI 
underwent preprocessing in the Stampede2 supercomputer of the Texas Advanced 
Computer Center in Austin, TX. Results were visually inspected and failures were 
reported in the GitHub repository. Once software faults were fixed, fMRIPrep 1.0.0 
was released and phase II of validation was launched.

In validation phase II, focused on quality assurance and reliability testing, 
the coverage of OpenfMRI was extended to 54 available datasets (Supplementary 
Table 1), with four participants selected at random per dataset (with replacement 
of participants covered in phase I). A total of 325 participants were preprocessed 
in the Sherlock cluster of Stanford University (Stanford, CA). Validation phase 
II integrated a protocol for the screening of results into the software testing 
(Supplementary Fig. 2). Three raters evaluated each participant’s report according 
to the protocol described below. Their ratings are made available with the 
corresponding reports for scrutiny.

Each visual report generated in phase II was inspected by one expert (C.J.M., 
K.J.G., or O.E., selected randomly) at seven quality checkpoints: (i) overall 
performance, (ii) surface reconstruction from anatomical MRI, (iii) T1w brain 
mask and tissue segmentation, (iv) spatial normalization, (v) brain mask and 
regions of interest (ROIs) for CompCor application in native BOLD space (‘BOLD 
ROIs’), (vi) intrasubject BOLD-to-T1w co-registration, and (vii) SDC. Experts 
were instructed to assign a score on a scale from 1 (poor) to 3 (excellent) at each 

quality control point. A special rating score of 0 (unusable) was assigned to tasks 
that failed in a critical way that hampered further preprocessing. Poor (1) was 
assigned when fMRIPrep did not critically fail at the task but the outcome was 
likely to negatively affect downstream analysis. For example, when fieldmap-less 
correction unwarped in the expected direction but some distorted areas remained 
(or were overcorrected), then a rating of acceptable (2) was assigned. Finally, a 
rating of excellent (3) was assigned when the expert did not notice any substantial 
defect that would indicate a lower rating. Supplementary Fig. 3 shows the evolution 
of the quality ratings at the seven checkpoints at the beginning and completion of 
phase II (indicated by versions 1.0.0 and 1.0.7, respectively).

Comparison to an alternative preprocessing tool. For comparison, data were 
preprocessed with two alternative pipelines: fMRIPrep 1.0.8 and FSL’s FEAT 5.0.10. 
We then carried out identical analyses of each dataset preprocessed with either 
pipeline. In the first-level analysis, we calculated a t-statistic map per participant 
for the task under analysis (N =​ 257). Second-level analyses were conducted 
in a specific resampling scheme to allow for statistical comparison between 
the pipelines: two random (non-overlapping) subsets of n participants were 
repeatedly entered into a group-level analysis. The first step was the experimental 
manipulation resulting in two conditions: (1) the data were preprocessed with 
fMRIPrep, and (2) the data were preprocessed with FEAT. The next two steps were 
identical for both conditions.

Preprocessing. Preprocessing with fMRIPrep is described using the corresponding 
citation boilerplate (Supplementary Note 3). We configured FEAT using its 
graphical user interface and generated a template.fsf file, which can be found in 
GitHub (https://github.com/oesteban/misc/tree/16660df9fe80d20107b6abd7f
c8ce1f4946791e6/fsl-feat). We manually extended execution to all participants 
in our sample, creating the script fsl_feat_wrapper.py, which accompanies the 
template.fsf file in GitHub. As can be seen in the template.fsf file, we disabled 
band-pass filtering and spatial smoothing to make the results of preprocessing 
comparable. Both processing steps (temporal filtering and spatial smoothing) 
were implemented in a common, subsequent analysis workflow described below. 
Additionally, we manually configured the ICBM 152 Nonlinear Asymmetrical 
template97 version 2009c as a target for spatial normalization. Finally, we manually 
resampled the preprocessed BOLD files into template space using FSL’s FLIRT.

To investigate the spatial consistency of the average BOLD signal across 
participants, we calculated s.d. maps in MNI space for the temporal average map28 
derived from preprocessing with both alternatives.

We used AFNI’s 3dFWHMx to estimate the (average) smoothness of the 
data at two checkpoints: (i) before the first-level analysis workflow, and (ii) after 
application of a 5.0-mm full-width at half-maximum (FWHM) spatial smoothing, 
which was the first step of the analysis workflow described below.

First-level statistical analysis. We analyzed the stopsignal task data using FSL and 
AFNI tools, integrated in a workflow using Nipype. Spatial smoothing was applied 
with AFNI’s 3dBlurInMask with a Gaussian kernel of FWHM =​ 5 mm. Activity 
was estimated using a general linear model with FSL’s FEAT. For the one condition 
under comparison (go – successful), one task regressor was included with a fixed 
duration of 1.5 s. An extra regressor was added with equal amplitude, but with the 
duration equal to the reaction time. These regressors were orthogonalized with 
respect to the fixed-duration regressor of the same condition. Predictors were 
convolved with a double-gamma canonical hemodynamic response function. 
Temporal derivatives were added to all task regressors to compensate for variability 
on the hemodynamic response function. Furthermore, the six rigid-motion 
parameters (translation in three directions, rotation in three directions) were added 
as regressors to avoid confounding effects of head motion. We included a high-pass 
filter (100 Hz) in FSL’s FEAT.

The statistical map for each participant was binarized at z =​ ±​1.65 (which 
corresponds to a two-sided test value of P <​ 0.1). Then, the average of these maps 
was computed across participants. The average negative map (the percentage of 
subjects showing a negative effect with z <​ –1.65) was subtracted from the average 
positive map to indicate the direction of effects. High values in certain regions and 
low values in other regions indicate a good overlap of activation between subjects.

Second-level statistical analysis. Subsequent to the single-subject analyses, two 
random, non-overlapping subsamples of n subjects were taken and entered into 
a second-level analysis. We varied the sample size n of groups between 10 and 
120. We ran the group-level analyses based on two variants of the first level: 
with a prescribed smoothing of 5.0-mm FWHM, and without such a smoothing 
step. The resampling process was repeated 200 times per group sample size and 
smoothing condition. To investigate the implications of either pipeline on the 
group analysis use case, we ran the same ordinary least-squares mixed modeling 
using FSL’s FLAME on each of two disjoint subsets of randomly selected subjects 
and resampling repetition. We calculated several metrics of spatial agreement on 
the resulting maps of (uncorrected) P-statistical values. We also calculated the 
spatial agreement of the thresholded statistical maps, binarized with a threshold 
chosen to control for the false discovery rate (FDR) at 5% (using FSL’s FDR 
command).
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Ethical compliance. We complied with all relevant ethical regulations. This study 
reused publicly available data acquired at many different institutions. Protocols for 
all of the original studies were approved by the corresponding ethical boards.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Software availability. fMRIPrep’s source code is available at GitHub (https://
github.com/poldracklab/fmriprep). We use Zenodo to generate new digital object 
identifiers for each new release of fMRIPrep, the latest being version 1.1.4 (https://
doi.org/10.5281/zenodo.1340696). fMRIPrep is licensed under the BSD 3-Clause 
“New” or “Revised” License. Software is distributed as a Python package (https://
pypi.org/project/fmriprep/), as a Docker container (https://hub.docker.com/r/
poldracklab/fmriprep/), and as a CodeOcean capsule22.

Data availability
All original data used in this work are publicly available through the OpenNeuro 
platform (formerly OpenfMRI). Derivatives generated with fMRIPrep in this work 
are available at https://s3.amazonaws.com/fmriprep/index.html. The expert ratings 
collected after visual assessment of all reports are available through FigShare 
(https://doi.org/10.6084/m9.figshare.6196994.v3). Source data for Fig. 3 are 
available online.
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Data collection This manuscript uses data publicly available from the OpenfMRI.org/OpenNeuro.org resource (i.e. availability of software used in data 
collection is responsibility of the original submitters to the repository). Data was collected using datalad version 0.9.1.

Data analysis All the code, tests, and results of the analyses are available under open-source licenses (BSD-3-clause and MIT for software and CC0 for 
data derivatives). Preprocessing was conducted using fMRIPrep, versions 1.0.7 and 1.0.8. FMRIPrep uses tools such as AFNI, ANTs, FSL, 
FreeSurfer, ICA-AROMA, Nilearn, and Nipype. All versions of these software tools are specified in the Online Methods document and in 
Supplementary Note 3. Data analysis was carried out using FSL 5.0.8, Nilearn 0.4, and Nipype 1.0.
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All original data used in this work are publicly available through the OpenNeuro.org platform (formerly, OpenfMRI). Derivatives generated with fMRIPrep in this 
work are available at https://s3.amazonaws.com/fmriprep/index.html. The expert ratings collected after visual assessment of all reports are available through 
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Sample size Experiment 1 utilizes 325 participants, collected from 54 qualifying MRI studies in OpenfMRI. Four participants per qualifying study were 
selected at random, except for ds0000031 which only has one participant densely sampled. Analysis is fundamentally visual by experts and 
therefore no power calculation was necessary. Experiment 2 utilizes all 257 participants of ds000030 (OpenfMRI's accession number), 
establishing a comparative design between the proposed workflow (fMRIPrep) and a widely-adopted alternative (FSL FEAT) in preprocessing 
the data. Analysis is fundamentally visual, but also included an exploratory test-retest analysis of several measurements. Since the nature of 
the analysis was exploratory, N=257 was deemed sufficient.

Data exclusions In Experiment 1 some participants that contained: a) data preprocessed in any way -e.g. skull-stripped T1-weighted MRI-, except defacing 
which is necessary to share datasets; or b) errors on the BIDS organization of the data and associated metadata. 
In Experiment 2, 15 participants, for which some image modality was missing (T1w or BOLD) or the task information was lost and inaccessible 
were removed. 
The rationale behind these exclusion criteria is that fMRIPrep requires a) unprocessed data; b) a BIDS valid structure for the input datasets; 
and c) the input dataset must have, at least, one T1w image and one BOLD run per participant. Thus, exclusion criteria were implicitly imposed 
by the presented tool prior to the start of the study.

Replication Replication is tracked through continuous integration testing. Three datasets are preprocessed with fMRIPrep after every change done to the 
codebase, and the MD5 sums of final and intermediate results are checked for identity w.r.t. previous versions of the tool. When some 
changes break replication of results (i.e. with version changes), then the database of MD5 sums is updated manually by a developer to ensure 
that no accidental changes are done. Within version reproducibility (or run-to-run reproducibility) is ensured using container technology. 
Details are provided in the Methods section of the paper and Supplementary Note 4.

Randomization In Experiment 1, four participants per qualifying study were selected at random, except for ds0000031 which only has one participant densely 
sampled. 
For the group-level statistical analysis of Experiment 2, we run an analysis of overlap of statistical maps extracted from disjoint groups, 
randomly sampled with increasing sample sizes starting from 5 through 120. The resampling was repeated 200 times per sample size.

Blinding Blinding was not possible, as this study reuses publicly available data. 
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Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics not measured

Recruitment opportunistic (publicly shared data)

Magnetic resonance imaging
Experimental design

Design type The method presented in this manuscript is agnostic to the design type (task/rest, block/random).

Design specifications The method presented in this manuscript requires, at least: a) unprocessed data; b) a BIDS valid structure for the input 
datasets; and c) the input dataset must have, at least, one T1w image and one BOLD run per participant.

Behavioral performance measures not applicable

Acquisition

Imaging type(s) functional MRI, structural MRI (T1-weighted and T2-weighted), field maps

Field strength 1.5T, 3T

Sequence & imaging parameters As presented in the paper, the methods proposed identify the sequences and imaging parameters automatically to 
build up the processing work flow.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Preprocessing software is the core of this contribution. Thus, it is thoroughly described in the main text and methods 
section.

Normalization Nonlinear spatial normalization is proposed and described in depth in the main text and methods section.

Normalization template The methods presented allow to use any available template given certain specifications described in the 
documentation. By default, results are normalized to the ICBM152 Nonlinear Asymmetric 2009 version c. The software 
also uses the OASIS and the ICBM152 Linear Symmetric templates. Optionally, NKI template is also available.

Noise and artifact removal Described in depth within the main text and methods section

Volume censoring Estimated confounds allow the application of volume censoring, but we did not use volume censoring in our evaluation.

Statistical modeling & inference

Model type and settings Activity maps per subject were estimated on the task data using a general linear model (GLM). For the one condition 
under comparison (go - successful stop) one task regressor was included with a fixed duration of 1.5s and an extra 
regressor was added with equal amplitude, but the duration equal to the reaction time. Again, these regressors were 
orthogonalized with respect to the fixed duration regressor of the same condition. Predictors were convolved with a 
double-gamma canonical hemodynamic response function. Temporal derivatives were added to all task regressors to 
compensate for variability on the hemodynamic response function. Furthermore, the six rigid-motion parameters 
(translation in 3 directions, rotation in 3 directions) were added as regressors to avoid confounding effects of head 
motion. We included a high-pass filter (100Hz). Subsequent to the single subject analyses, two random (non-
overlapping) subsamples of n subjects were taken and entered into a second level analysis. We vary the sample size n 
between 10 and 120 (total was 257 subjects). This process is repeated 200 times. We analyzed the group data using 



4

nature research  |  reporting sum
m

ary
April 2018

ordinary least squares (OLS) mixed modeling. Subsequently, we threshold the statistical maps, ensuring control of the 
False Discovery Rate (FDR).

Effect(s) tested Test-retest reliability of probabilistic and binary indices of activation overlap between groups and Pearson correlation. 
The only task under analysis was the Stop Signal Task, and the only contrast analyzed was "go - successful stop".

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

voxel-wise

Correction FDR 5%

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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